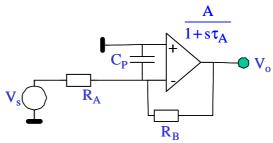

Università degli Studi di Milano – Bicocca Dipartimento di Fisica "G. Occhialini" Piazza della Scienza, 3 – 20126 – Milano

Tel.: +39 0264482825 Fax:: +39 0264482463 e-mail: pessina@mib.infn.it

ELETTRONICA APPLICATA Tema d'esame del 25 Luglio 2012

Es. 1:

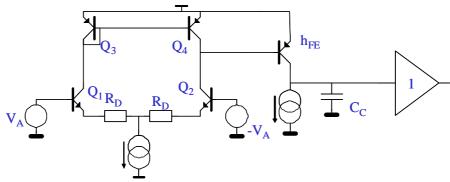

Determinare il rapporto tra la corrente I_O ed il riferimento V_{REF} dello schema sotto riportato.

Si assuma che gli amplificatori operazionali abbiano guadagno elevato. Quale è la ragione per cui risulterà che I_O dipenderà dalla resistenza di carico R_O ?

Es. 2:

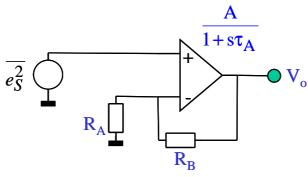
Si determini il guadagno di anello T della rete sotto riportata, assumendo che l'impedenza di uscita dell'amplificatore operazionale sia di valore trascurabile.

Si suggerisca un modo per compensare il nodo aggiunto dalla capacità C_P e si determini la nuova funzione di trasferimento.


Es. 3:

Si determini la funzione di trasferimento dell'amplificatore operazione mostrato sotto supponendo che la trasconduttanza g_m di Q_1 e Q_2 sia adeguatamente elevata da soddisfare $1/g_m << R_D$ e $Q_3 = Q_4$.

Università degli Studi di Milano – Bicocca Dipartimento di Fisica "G. Occhialini" Piazza della Scienza, 3–20126 – Milano


Tel.: +39 0264482825 Fax:: +39 0264482463 e-mail: pessina@mib.infn.it

Si determini la frequenza a guadagno unitario.

Es. 4:

Si supponga presente nella rete presentata sotto la sola sorgente di rumore indicata.

Si calcoli il rumore RMS all'uscita tenendo conto che l'amplificatore operazionale ha una banda limitata, a polo dominante.