NOISE DUE TO DONORS IN n-CHANNEL SILICON JFETS
S. K. KIM and A. VAN DER ZIEL†
Electrical Engineering Department, University of Minnesota,
Minneapolis, MN 55455, U.S.A.

and

L. M. RUCKER‡
Electrical Engineering Department, University of Florida,
Gainesville, FL 32611, U.S.A.

(Received 23 January 1978)

Abstract—We have measured the noise due to donors in n-channel silicon JFETs at temperatures near liquid nitrogen temperature. The noise showed an activation energy of about $1.3E_0$, where E_0 is the activation energy of the donor centers. This is compatible with theory.

While studying the temperature dependence of the noise parameter R_{eq} in short-channel (4.1 µm) n-channel silicon JFETs, we found a sharp increase in the noise resistance R_n at temperatures near 77°K. We interpreted this increase in the noise as generation-recombination noise, caused by the fact that not all donors are ionized at low temperatures.

The devices were low-current low-saturation-voltage devices, so that heating effects were rather insignificant. The noise was frequency-independent up to at least 10 MHz, indicating a very small time constant τ of the generation-recombination process. Figure 1 shows an example of the measurements. Here $\ln R_n$ is plotted vs e/kT; the full-drawn curve gives the measurements and the dotted line is corrected for the background thermal noise of the device. We see that the corrected curve is a straight line with an activation energy of 0.061 eV. Other measurements gave similar results and similar values.

The theory of the effect is well known([1, 2]). Let the donors give rise to recombination and generation rates $r(n) = \rho n^2$ and $g(n) = \gamma (N_d - n)$, respectively, where N_d and n are the donor and the electron concentrations, respectively, both per unit volume. Here γ and ρ are constants, γ depends on temperature as const. $\exp(-E_0/kT)$, where E_0 is the activation energy of the donors in eV, so that the activation energy of R_n is about 1.3 E_0.

The equilibrium electron concentration n_0 follows from

$$\gamma (N_d - n_0) = \rho n_0^2.$$

(1)

This leads to a time constant τ and a variance ($\text{var} n$) of n

$$\tau = 1/(2\rho n_0 + \gamma) = (1/\gamma)n_0(2N_d - n_0);$$

$$\text{var} n = \alpha n_0 = n_0(N_d - n_0)/(2N_d - n_0).$$

(2)

The spectral intensity of the current noise for a non-saturated device is then given as[1, 2]

$$S_I(f) = (4ep/L^2)I_dV_0\sigma_1(1 + \omega^2\tau^2)$$

(3)

where e is the electron charge, μ the mobility, L the channel length, I_d is the drain current and V_d the drain voltage; for saturated devices V_d must be replaced by the saturation voltage V_{ds}. The noise resistance of the device is defined by

$$4kT_0R_n = S_I(f)/g_m^2$$

(3a)

where g_m is the transconductance of the device and T_0 is

Fig. 1. R_n vs e/kT for device FD110 No. 1 $V_d = 3.0$ V, $V_g = -0.5$ V, $f = 4$ MHz, $T_0 = 298°K$. Full drawn curve gives the measurements; the dotted curve is corrected from the data by subtracting a fixed thermal noise resistance of 75 ohms to get the net effect of the $g-r$ noise of the donors. The slope of the dotted curve gives an activation energy of 0.061 eV.

†Both supported by ARO (Durham) contract with the University of Minnesota.
‡Supported by N.S.F. contract with the University of Florida.
room temperature. Since in our measurements $\omega^2 \tau^2 \ll 1$, the noise resistance R_n is proportional to $\alpha \tau$.

If we put $u = n_0/N_d$, we may write

$$\alpha \tau = \left(1/\gamma(u(1-u)(2-u)^2)\right)$$ (4)

where u follows from (1) as

$$u = 1/2\delta[-1 + (1 + 4/\delta)^{1/2}]$$ (4a)

and $\delta = \gamma/(\rho N_d)$. Figure 2 shows $\gamma \alpha \tau = u(1-u)(2-u)^2$ as a function of δ. We see that this function is independent of δ near $\delta = 1$ and that it varies as $1/\delta$ for very large δ. The activation energy of $\alpha \tau$ and hence of R_n thus lies between E_0 and $2E_0$ electron volts.

We now return to Fig. 1. We made the transition from the full-drawn curve to the dotted curve by subtracting a constant noise resistance R_n due to thermal noise. If we could have made a more accurate determination of R_n as a function of the temperature T, we might have seen a gradual change in the slope of the dotted line, as required by Fig. 2. However, we were unable to do so. Nevertheless, the results obtained with our crude correction show reasonable compatibility with the above theory.

The theory leading to eqn (3) is a low-field theory that needs to be corrected for field-dependent mobility effects. We will return to that problem in a subsequent paper but wish to point out that this does not affect the presence of the parameter $\alpha \tau$ and hence does not affect the temperature dependence of R_n. There is also some temperature dependence of g_m but this only slightly alters the dependence of R_n upon T, since $\alpha \tau$ varies as $\exp(\varepsilon E_0/kT)$ whereas g_m varies as a low power of T.

Acknowledgement—The authors are indebted to Dr. C. F. Hiatt for providing the n-channel JFETs used in the experiments.

REFERENCES